Sunday, April 2, 2017

Pakistani Students Team Wins First Place in Stanford Design Contest

A 3-person team of Pakistani students, including a female student from Islamabad's National University of Science and Technology (NUST), won first place in a contest organized by Stanford Center of Longevity. The team's entry is a device they designed and prototyped that enables tremor patients to perform daily routine tasks.

The Purpose: 

The purpose of the contest is to encourage innovation to help improve the quality of life of aging populations in the West and the rest of the world.

The 2017 Stanford Longevity Design Challenge had the following goals:

1. Create well-designed, practical solutions that address key issues associated with aging

2. Encourage a new generation of students to become knowledgeable about aging issues

3. Provide promising designers with a path to drive change in the world


2017 Stanford Longevity Design Challenge Winners
The Winners: 

NUST's Hooriya Anam, Awais Shafique, and Arsalan Javed defeated teams from around the world with their anti-tremor prototype project TAME. The team from famed Massachusetts Institute of Technology (MIT) placed second while Virginia Tech team stood third, according to results announced by the Center.
NUST's Stanford Challenge Winners From L to R: Arsalan Javed, Hooriya Anam, Awais Shafique

The Competitors:  

In addition to NUST, MIT and Virginia Tech teams, there were other teams from Cornell University, University of Sao Paolo Brazil,  China's Beijing University and Silicon Valley's Stanford University who also competed in the contest.

The winners received $17,000 in cash prizes along with paid travel to Stanford where they presented their designs to industry, academic, and government leaders.

College and University Enrollment in Pakistan:

Wins such as the Stanford Challenge are the result of improvements in higher education in Pakistan since the year 2000.

There are over 3 million students enrolled in grades 13 through 16 in Pakistan's 1,086 degree colleges and 161 universities, according to Pakistan Higher Education Commission report for 2013-14.  The 3 million enrollment is 15% of the 20 million Pakistanis in the eligible age group of 18-24 years.  In addition, there are over 255,000 Pakistanis enrolled in vocational training schools, according to Technical Education and Vocational Training Authority (TEVTA).

Graduation Day at NED Engineering University For 1300 Graduates in 2013
Pakistani universities have been producing over half a million graduates, including over 10,000 IT graduates, every year since 2010, according to HEC data. The number of university graduates in Pakistan increased from 380,773 in 2005-6 to 493,993 in 2008-09. This figure is growing with rising enrollment and contributing to Pakistan's growing human capital.

Source: UNESCO's Global Education Digest 2009






Higher education in Pakistan has come a long way since its independence in 1947 when there was only one university, the University of Punjab. By 1997, the number of universities had risen to 35, of which 3 were federally administered and 22 were under the provincial governments, with a combined enrollment of 71,819 students. A big spending boost by President Pervez Musharraf helped establish 51 new universities and awarding institutions during 2002-2008. This helped triple university enrollment from 135,000 in 2003 to about 400,000 in 2008, according to Dr. Ata ur Rehman who led the charge for expanding higher education during Musharraf years. There are 161 universities with 1.5 million students enrolled in Pakistan as of 2014.

R&D Investment: 

Rise of research and publications at Pakistani universities began during Musharraf years when the annual budget for higher education increased from only Rs 500 million in 2000 to Rs 28 billion in 2008, to lay the foundations of the development of a strong knowledge economy, according to former education minister Dr. Ata ur Rehman. Student enrollment in universities increased from 270,000 to 900,000 and the number of universities and degree awarding institutions increased from 57 in 2000 to 137 by 2008. Government R&D spending jumped seven-fold as percentage of GDP from 0.1% of GDP in 1999 to 0.7% of GDP in 2007. It has since declined as percentage of GDP.

Summary:

Pakistani students, scientists and researchers are continuing to produced highly recognized and cited research in spite of serious economic and security challenges. Enrollment in higher education is rising and giving a boost to innovation. With better policy focus and more investment in higher education, Pakistan  can make an even greater impact with its young demographics.

Related Links:

Haq's Musings

Pakistan Beats BRICS in Highly Cited Research

Pakistan Becomes CERN Member

Pakistani Scientists at CERN

Rising College Enrollment in Pakistan

10 Pakistani Universities Among Asia's Top 300

Genomics and Biotech Research in Pakistan

Human Capital Growth in Pakistan

Educational Attainment in Pakistan

Pakistan Human Development in Musharraf Years

Robotics Growth in Pakistan 

3 comments:

Riaz Haq said...

Dr Ata ur Rehman on Geo TV's Jirga with Saleem Safi

2.6% of 17-24 yrs of age group enrolled in higher education in 2000 jumped to 13-14% now.

Riaz Haq said...


Only 10% of students have access to higher education in country

http://timesofindia.indiatimes.com/home/education/news/Only-10-of-students-have-access-to-higher-education-in-country/articleshow/28420175.cms

Access to education beyond higher secondary schooling is a mere 10% among the university-age population in India. This is the finding of a report "Intergenerational and Regional Differentials in Higher Education in India" authored by development economist, Abusaleh Shariff of the Delhi-based Centre for Research and Debates in Development Policy and Amit Sharma, research analyst of the National Council of Applied Economic Research.
The report says that a huge disparity exists — as far as access to higher education is concerned — across gender, socio-economic religious groups and geographical regions. The skew is most marked across regions. Thus, a dalit or Muslim in south India, though from the most disadvantaged among communities, would have better access to higher education than even upper caste Hindus in many other regions. Interestingly, people living in Bihar, Uttar Pradesh and West Bengal — designated as the north central region — and those in northeast India have the worst access to higher education. Those in southern India and in the northern region — consisting of Jammu & Kashmir, Punjab, Himachal Pradesh, Uttarakhand, Chandigarh, Haryana and Delhi — are relatively better placed in this regard.
In the age group 22-35 years, over 15% in the northern region and 13% in the southern region have access to higher education. In the north-central region, the number is just 10% for men and 6% for women whereas in the northeast, only 8% men and 4% women have access to higher education.

The report, brought out by the US-India Policy Institute in Washington, is based on data from the 64th round of NSSO survey 2007-08. It throws up quite a few other interesting facts. For instance, among communities, tribals and dalits fare worst with just 1.8% of them having any higher education. Muslims are almost as badly off, with just 2.1% able to go for further learning. Similarly, just 2% of the rural population is educated beyond higher secondary level, compared to 12% of the urban population and just 3% of women got a college education compared to 6% of men.
South India offers the best opportunities for socially inclusive access to higher education including technical education and education in English medium. For instance, the share of Hindu SC/ST in technical education in south India is about 22%, and the share of Muslims 25%. These were the lowest shares among all communities in south India. But this was higher than the share of most communities including Hindu OBCs and upper caste Hindus in most other regions. South India also has the highest proportion of higher education in the private sector at about 42%, followed by western India where it is 22%. The northeast has the least privatized higher education sector and is almost entirely dependent on government-run or aided institutions.

Riaz Haq said...

A 17-year-old Pakistani high school student's physics paper has surprised some older scientists

https://www.nytimes.com/2017/10/04/science/electric-honeycomb.html

This is an electric honeycomb. It’s what happens when certain kinds of electrically charged particles travel between a pointy electrode and a flat one, but bump into a puddle of oil along the way.

The polygonal pattern that emerges is what some physicists also call the rose-window instability, because it resembles the circular, stained-glass designs found in Gothic churches. It’s what happens as natural forces work to keep an electric charge moving in an interrupted circuit.


This visualization reveals fundamental principles about how electricity moves through fluids that engineers can use to develop technology for printing, heating or biomedicine. But it also reminds us that humans aren’t the only ones seeking stability in an unstable world. Even tiny, unconscious objects need balance. You can see similar patterns in wax honeycombs, fly’s eyes and soap bubbles.

Physicists knew of this phenomenon decades before Muhammad Shaheer Niazi, a 17-year-old high school student from Pakistan met the electric honeycomb. In 2016, as one of the first Pakistani participants in the International Young Physicists’ Tournament, he replicated the phenomenon and presented his work as any professional scientist would. But he also developed photographic evidence of charged ions creating the honeycomb, and published his work Wednesday in the journal Royal Society Open Science.

But first: How does the honeycomb form?

Just about every electronic device in your home contains capacitors, which store electricity, a bit like a battery. Electricity travels from the top electrode, through the insulator, to the bottom, or ground electrode.

An electric honeycomb behaves like a capacitor. In this case, the top electrode is a needle that delivers high voltage to the air just a few centimeters above a thin layer of oil on the other flat, grounded surface electrode.

The high voltage strips molecules in the air of their electrons, and creates what’s called a corona discharge, pouring down these electrically charged particles, or ions, like water from a fountain, onto the surface of the oil. Just as lightning strives to strike the ground, these ions want to hit their ground electrode. But because oil is an inefficient conductor, they can’t get through it.

“We can say this is frustrated lightning,” said Alberto T. Pérez Izquierdo, a physicist at the University of Seville in Spain whose 1997 work on the subject inspired Mr. Niazi’s project.


The ions start accumulating on top of the oil until their force is too much. They sink down, forming a dimple in the oil that exposes the bottom electrode, allowing them to find their ground.

But now, the surface of the oil is no longer even. Within milliseconds, dozens of hexagonal shapes form in the layer that help maintain the equilibrium nature demands. The polygons keep the amount of energy flowing into and out of the system equal, and balance two forces — gravity, which keeps the oil’s surface horizontal, and the electric field pushing down on top of it.

To prove that the ions were moving, Mr. Niazi photographed images of the shadows formed by their wind as they exited the needle and recorded the heat presumed to come from the friction of their travel through the oil. Heat appeared to originate at the needle, and dissipate outward, increasing with time — even five minutes after the honeycomb formed.

The thermal images puzzled Dr. Pérez Izquierdo. Neither he nor others had previously explored temperature changes on the oil’s surface, and he would have expected a smaller and more even heating effect than Mr. Niazi observed. Determining the heat’s origin is an interesting question that requires more study, he said, while also praising Mr. Niazi’s experimental skill.

“I think it’s outstanding for so young a scientist to reproduce these results,” Dr. Pérez Izquierdo said.